Phonon excitation and instabilities in biased graphene nanoconstrictions
نویسندگان
چکیده
منابع مشابه
Plasmonics in graphene at infrared frequencies
We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch Oph 0.2 eV. Large plasmon losses occur in the interband regime via excitation of electron-hole pairs , which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth o...
متن کاملPhotoconductivity of biased graphene
Graphene is a promising candidate for optoelectronic applications such as photodetectors, terahertz imagers and plasmonic devices. The origin of the photoresponse in graphene junctions has been studied extensively and is attributed to either thermoelectric or photovoltaic effects. In addition, hot carrier transport and carrier multiplication are thought to play an important role. Here, we repor...
متن کاملAb initio calculation of ideal strength and phonon instability of graphene under tension
Graphene-based sp2-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal strengths due to their exceedingly small dimensions. We have calculated the phonon spectra of graphene as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path, which controls the strength of a defec...
متن کاملLow-frequency acoustic phonon temperature distribution in electrically biased graphene.
On the basis of scanning thermal microscopy (SThM) measurements in contact and lift modes, the low-frequency acoustic phonon temperature in electrically biased, 6.7-9.7 μm long graphene channels is found to be in equilibrium with the anharmonic scattering temperature determined from the Raman 2D peak position. With ∼100 nm scale spatial resolution, the SThM reveals the shifting of local hot spo...
متن کاملRippling ultrafast dynamics of suspended 2D monolayers, graphene.
Here, using ultrafast electron crystallography (UEC), we report the observation of rippling dynamics in suspended monolayer graphene, the prototypical and most-studied 2D material. The high scattering cross-section for electron/matter interaction, the atomic-scale spatial resolution, and the ultrafast temporal resolution of UEC represent the key elements that make this technique a unique tool f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017